
Controls/Communication for 3 TeV Booster, Low-field Option

Working Team: Bob Goodwin, Peter Lucas, Craig McClure, Elliott McCrory and Mike Shea. Tuesday August 5, 1997

Regular beam instrumentation concentrated into "lumps" of electronics. For adequate coverage,

two lumps per period will be sufficient. For 3 TeV Booster, that will be every 80 meters. There will be one computer per lump which reads/controls all the devices in that area of the accelerator. This is a different topology than that which is generally used today. Commercial electronics are used for simplicity and to reduce costs. A really fast local computer does digital signal processing operations; can also be web server.

Item	Number	Data Rate	Unit cost?	Questions/Comments
BPM Pickups	4/period	10 MHz	\$500	One per beam * two beams per diagnostics lump; split-cylinder seems best.
BPM Electronics	4/period	10 MHz	\$1000	Log amplifiers; DSP done in local PC
BPM Digitizers	4/period	10 MHz	\$500	Individual bunches up to 100 nsec/bunch
Loss Monitor	4/period	1 kHz	\$500	One per beam * two per period. Continuous.
BLM Digitizers	4-8/period	1 kHz	\$500	Used for correctors, too.
Local Computer	2/period	(n/a)	\$500	An "IRM" with PowerPC processor
Correctors	2/period	1 kHz		Details pending
Robot?	1	"slow"		Communicates via wireless Ethernet; reads bar codes; camera; wrench; lights; sniffer; temperature; pressure
Vacuum	@ 150 m	1 kHz		Readout at a lump
Cryo instrumentation	?	?		Similarly, arrange to have these readouts near a lump
Gate valves	@ 750 m	1 Hz		EM-controlled valves; no air
Ion pumps	@ 150 m	1 Hz		Readout at a lump

Cost per lump: Under \$10k (corrector scheme not designed, though)

Estimated power at a lump: < 100 W for electronics; add power for correctors.

Communications: With today's technology, Fiber-based Ethernet in a "Star"; Four (4) main routers on the surface each feeding six (6) switches in the tunnel, which in turn feed three (3) lumps. Clock(s) would follow parallel path. High-precision beam-sync clock not needed everywhere, only at high-precision diagnostics. Will research combination of event clock with beam sync clock ringwide. Estimated cost of computer network: \$225k. For clock: \$150k.

Technology is changing rapidly. Need to remain flexible on all aspects here.